

Team 309: Sprinter Data Collection

Members

Adam Breindel, EIT

Electrical

Engineer

Systems Engineer

Lucero Cruz

Electrical

Engineer

Applications Engineer

Stephanie Damas

Electrical

Engineer

Team Leader

Christian Gazmuri
Electrical &
Computer Engineer

Lead Computer Engineer

Beauponte Mezonlin Electrical Engineer

Lead Electrical Engineer

Sponsor

Professional Advisors:

Robert Hickner, PhD
Michael Ormsbee, PhD, FACSM, FISSN, CSCS

Motivation

- To improve the performance of the sprinter
- Solution To create an affordable device that can help coaches analyze sprinter data

Lucero Cruz

Project Scope

Project Description:

A product that improves data tracking for sprinters/runners.

Goals:

- Create an alternative to devices already established for tracking runner data that is cost effective.
- Capture accurate data points.
- Provides similar or improved data sampling for the sprinters/runners.

Lucero Cruz

Market Competition

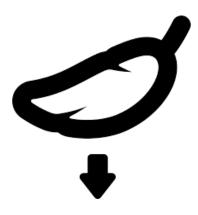
Capability	Devices						
	1080 Sprint	Zepp Play	StatSports	Our Vision			
Force	✓	X	X	X			
Acceleration	✓	✓	✓	✓			
Speed	✓	✓	✓	✓			
Stride Length	×	×	×	✓			
Stride Frequency	×	×	×	✓			
Distance	×	✓	✓	✓			
Deceleration	X	X	✓	X			
Active Time (Productivity)	×	✓	×	×			

Lucero Cruz

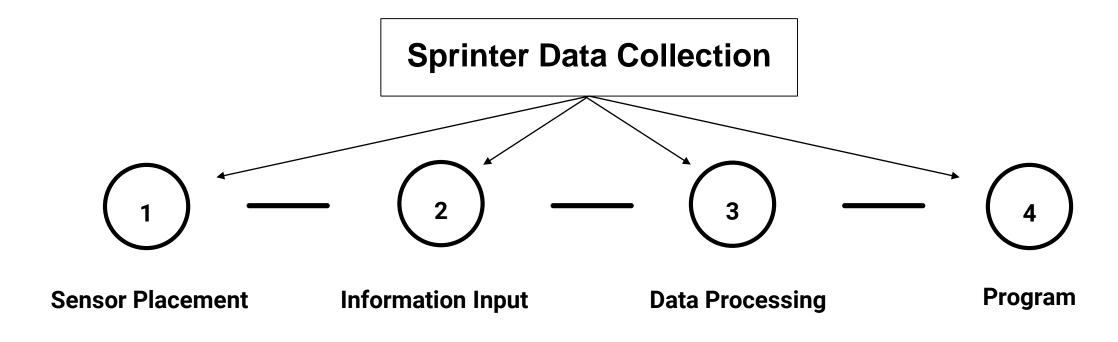
Targets

Data Measurement

User Interface

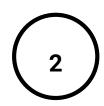

Customizable

Affordable


Water Resistant

Lightweight

Lucero Cruz


Sensor Placement

- Placement of IMU (Inertial measurement unit)
 - Chest mount on runner

Information Input

- User Information Input
 - Allow for multiple runners
 - Name, Height, Weight
- Camera and IMU Input
 - Camera
 - .MOV file, Manual input
 - IMU
 - .CSV file, Manual input

Data Processing

- Data Processing
 - Interpret accelerometer input data from .CSV file
 - Use of OpenCV for feature tracking to obtain
 - Stride Length
 - Stride Frequency
 - Top Speed

Program

Program

- Synchronize data from IMU with Video Processing
- Ability to save or erase runs
- Display useful data
- Feature to view changes in data / changes over time

IMU (Inertial Measurement Unit)

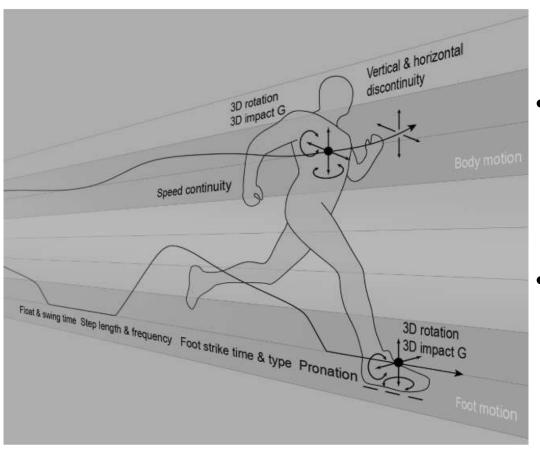
- Gyroscope
 - Angular Rotation
- Accelerometer
 - Linear Acceleration
- Data Process
 - MetaBase app
 - Computer
- Challenge
 - Drift
 - Double Integration

Beauponte Mezonlin

Concept Selection-IMU

	Internal Measu	urement Unit (IM	U)		
	MetaMotion R	10 DOF IMU Sensor	Blue Trident		
Price	\$87	\$25	\$1,600		
Weight	0.3 oz	0.11 oz	0.21 oz		
Battery Life	8 hrs	æ	12 hours		
Range	+-16g	+-16g	+-16g		
Frequency	400 Hz	200 Hz	1125 Hz		
Durability	Water resistant, protective shell	No case	Water resistant, protective shell		

Beauponte Mezonlin


Concept Selection-IMU

Internal Measurement Unit (IMU)						
Good: 1 Neutral: 0 Bad: -1	MetaMotion R 10 DOF IMU Sensor (D) Blue Tr		Blue Trident			
Price	0	1	-1			
Ease of Use	1	0	1			
Weight	0	1	0			
Battery Life	0	-1	1			
Range	0	0	0			
Frequency	0	-1	1			
Durability	1	-1	1			
Score	3	-1	3			

Beauponte Mezonlin

Concept Selection - IMU Position: Chest

- Body depends on upper extremities and trunk
 - Propulsion
 - Balance
 - Stability
- Sensor placement on the chest
 - User comfort
 - Accurate reading of acceleration

Camera System

Video Resolution: high enough to capture the movement of the leg for accurate measure of stride length [1920 x 1080]

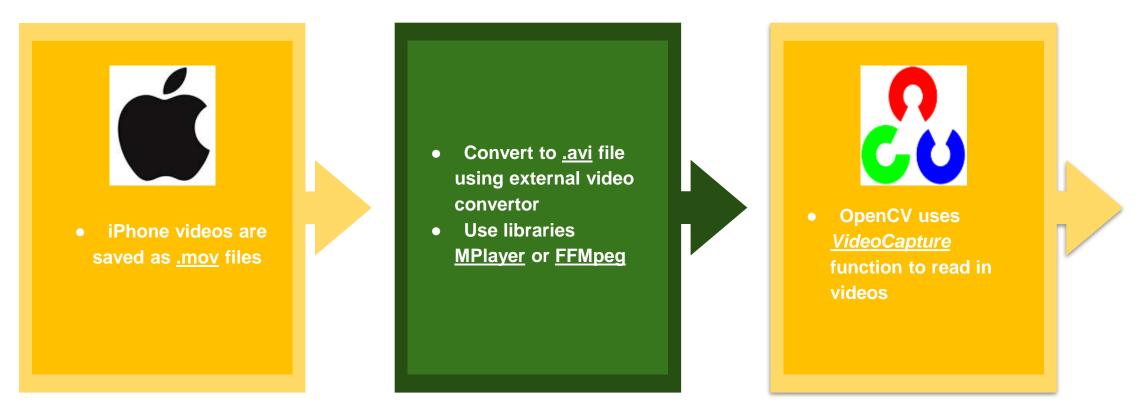
Size: reasonable size to be portable. Ease of use is most important.

Price: reasonable price to keep our device affordable and convenient

iPhone 6s Plus...and on

iPhone 6 and 6 Plus Lens

Specifications


- 4K video recording (8M pixel per frame)
- Optical image stabilization for video
- Continuous autofocus video
- Noise reduction

Selection

- Ease of use
- Compatibility with accelerometer being used
- Affordability

.mov >> OpenCV

Concept Selection - Program

Programming Software							
Good: 1 Neutral: 0 Bad: -1	Microsoft Visual Studio (C++/C)	Matlab	Python				
Familiarity	1	1	-1				
Functionality	1	-1	1				
Accessibility	1	1	1				
Score	3	1	1				

Microsoft Visual Studio >> OpenCV

- Implementation of OpenCV on Visual Studio can be done in a few minutes once OpenCV is downloaded.
- Already established functions in OpenCV that can interpret video files.
- Corresponding classes that are able to store and manipulate video data with matrix objects.

$$MSE = rac{1}{c*i*j}\sum{(I_1-I_2)^2}$$

$$PSNR = 10 \cdot \log_{10} \left(rac{MAX_I^2}{MSE}
ight)$$

Microsoft Visual Studio >> Accelerometer

- Accelerometer gives data within .csv files.
- C++ can take in those files and interpret data.
- Organized structure of data in relation with time.
- Allows for easy comparison to values given from video analysis.

time (-07:	elapsed (s	X-Axis (g)	Y-Axis (g)	Z-Axis (g)
2018-07-3	0	-0.311	-0.192	0.936
2018-07-3	0	-0.315	-0.195	0.942
2018-07-3	0	-0.316	-0.192	0.941
2018-07-3	0.12	-0.314	-0.193	0.943
2018-07-3	0.12	-0.313	-0.192	0.943
2018-07-3	0.12	-0.314	-0.193	0.944
2018-07-3	0.24	-0.313	-0.19	0.946
2018-07-3	0.24	-0.301	-0.2	0.945
2018-07-3	0.24	-0.292	-0.204	0.947

Bill of Materials

Sprinter Data Collection

Assembly Name : Sprinter Data Collection

Assembly Number: 1

Assembly Revision: 1

Approval Date: 29-Oct-19

Part Count: 3

Total Cost: \$110.28

	Part Name	Description	Qty	Units	Picture	Unit Cost		Cost	
1	MMR – MetaMotionR	IMU + Case	1			\$	86.99	\$	86.99
2	R Clip-on	Clip for MMR	1			\$	7.00	\$	7.00
3	Polar Replacement Soft Strap	Strap that will be worn on chest of runner	1			\$	16.29	\$	16.29

Next steps...

- Research
 - Different phone camera system compatibility
 - Video processing/specifications for measuring distance
 - Use of accelerometer/ interpreting data
 - Determining synchronization of two different data sets
- Meet again with the coaches and students to get test video files
- Complete PHA form to do testing with device

Project Summary

- Goals:
 - Assist coaches and sprinters in viewing runner data
 - Focus on device being low cost and accurate
- Give viewable outputs:
 - Stride length
 - Stride frequency
 - Acceleration
 - Top speed
 - Distance

Questions

